
HTTP and C#

Working With HTTP/REST APIs 

in .Net

 Jeff Ammons

 ammonsOnline.com



What Is HTTP?

 Hypertext Transport Protocol

 Data Transfer Layer

 Typically Sits On Top of TCP/IP

 Specification: http://www.w3.org/standards/techs/http#w3c_all

 Literally intended to transport hypertext documents

 Stateless

 Basis for World Wide Web



OSI Layers

 From Wikipedia: http://en.wikipedia.org/wiki/OSI_model

 OSI = Open System Interconnection

http://en.wikipedia.org/wiki/OSI_model


HTTP Visualized

From Anatomy of an HTTP Transaction from the Catchpoint Blog:

http://blog.catchpoint.com/2010/09/17/anatomyhttp/

Note that reality is usually a bit more complex

With load balancers and web farms.



HTTP Visualized

From Anatomy of an HTTP Transaction from the Catchpoint Blog:

http://blog.catchpoint.com/2010/09/17/anatomyhttp/



REST

 Representational State Transfer

 Interactive APIs

 Usually built on top of HTTP

 Makes use of established HTTP 

 Verbs

 Headers

 Status Codes



HTTP Verbs

 GET

 HEAD

 POST

 PUT

 DELETE

 TRACE

 OPTIONS

 CONNECT

 PATCH



HTTP Verbs (Most Used)

 GET

 HEAD

 POST

 PUT

 DELETE

 TRACE

 OPTIONS

 CONNECT

 PATCH



HTTP Verbs (Most Used)

 GET Idempotent Return entity or entities

 HEAD

 POST Not Idempotent Create new entity

 PUT Idempotent Update or replace entity

 DELETE Idempotent Remove entity

 TRACE

 OPTIONS

 CONNECT

 PATCH



Headers

 Instructions & Metadata

 POST

 Content-Length: 3

 Connection: Keep-Alive



Status Codes

 1xxx Informational

 100 Continue

 2xxx Success

 200 OK

 201 Created

 202 Accepted

 3xxx Redirection

 301 Moved Permanently

 4xxx Client Error

 403 Forbidden

 404 Not Found

 5xxx Server Error

 500 Internal Server Error

 503 Service Unavailable



Sample HTTP Request
POST http://jeffasage.azurewebsites.net/api/Values/Post HTTP/1.1

Content-Type: application/json

Host: jeffasage.azurewebsites.net

Content-Length: 3

Expect: 100-continue

Connection: Keep-Alive

Foo



Content

Headers

Sample HTTP Request
POST http://jeffasage.azurewebsites.net/api/Values/Post HTTP/1.1

Content-Type: application/json

Host: jeffasage.azurewebsites.net

Content-Length: 3

Expect: 100-continue

Connection: Keep-Alive

Foo



Microsoft’s (Traditional) View Of The World

Windows Desktop



Microsoft’s (Traditional) View Of The World

Windows Desktop

Windows Desktop On Mobile



Microsoft’s (Traditional) View Of The World

Windows Desktop

Windows Desktop On Mobile

Windows Desktop On Server



Microsoft’s (Traditional) View Of The 

World

 Desktop Windows Is The Default

 Everything Else Is A Variant

 Important Because

 Explains Some Oddities in .Net

 Default of 2 Outbound Connections Per host

Example From WebRequest Documentation:

“The DefaultWebProxy property reads proxy settings from the app.config file. 

If there is no config file, the current user's Internet Explorer (IE) proxy settings are used.”



Microsoft’s (New) View Of The World

 Slowly adopting a less Windows-centric view

 Cross platform is becoming a priority

 Open sourcing .Net code needed for server

 Announced Official Linux and Mac .Net

 ASP.Net 5 breaks MVC and Web API away from Web Forms

 Drop desktop windows underpinnings

 Github & Git for development in the open (explains the Git integration with 

TFS)

 20% of VMs on Azure are Linux



.Net Client Interactions With HTTP 

APIs
HttpClient

HttpWebRequest

WebRequest

ServicePointManager

ServicePoint



HttpClient vs WebRequest vs 

HttpWebRequest
 HttpClient is a wrapper around

 HttpWebRequest which is an implementation of the abstract class

 WebRequest

 If you have a choice for REST, choose HttpClient

 Much simpler interface

 Good level of abstraction

 Implements IDisposable

 Can be wrapped in using()

 .Net 4.5 for full features

 Built with async in mind

HttpClient

HttpWebRequest

WebRequest



What About WebClient?

 WebClient also wraps HttpWebRequest

 Derived from Component

 Primarily meant for Windows UI

 Sporadically supported on server

 Supports UI events like progress

 Works with older .Net versions

 Great for interacting with web pages in a GUI



HttpClient Example
using (var client = new HttpClient())
{

client.BaseAddress = new Uri(WebApiBase);
client.DefaultRequestHeaders.Accept.Clear();
client.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue("application/json"));
client.DefaultRequestHeaders.Add(“User-Agent”,”.NET Framework Example Client”);

HttpResponseMessage response = await client.PostAsJsonAsync<string>("api/Values/Post", "Foo");

Console.WriteLine("Request successful? {0}", response.IsSuccessStatusCode);
}



HTTPWebRequest Example
Stream dataStream = null;
WebResponse webResponse = null;

try
{

var webRequestClient = (HttpWebRequest)WebRequest.Create(WebApiBase + "api/Values/Post");
webRequestClient.UserAgent = ".NET Framework Example Client";
webRequestClient.Method = "POST";
webRequestClient.ContentType = "application/json; charset=utf-8";
webRequestClient.Accept = “application/json”;

byte[] contentArr = Encoding.UTF8.GetBytes("\"Foo\"");
webRequestClient.ContentLength = contentArr.Length;

dataStream = webRequestClient.GetRequestStream();
dataStream.Write(contentArr, 0, contentArr.Length);
dataStream.Close();

webResponse = await webRequestClient.GetResponseAsync();

var responseMessage = new HttpResponseMessage(((HttpWebResponse)webResponse).StatusCode);

Console.WriteLine("Request successful? {0}", responseMessage.IsSuccessStatusCode);
}
finally
{

if(dataStream != null)
dataStream.Close();

if (webResponse != null)
webResponse.Close();

}



ServicePoint and 

ServicePointManager
 ServicePoint represents a connection to a server

 Creates socket connection (potentially 2 if it sees IPv6)

 Ultimately hits Winsock (native code)

 Maintains list of how many connections exist

 Enforce max connections

 Options

 ServicePointManager manages a list of ServicePoint objects

 STATIC! Remember that! Practically global in scope (per app).

 Hold default settings

 Factory

 Return Existing or

 Create and Return (up to specified limit)

 Enforce Max ServicePoint objectsFun Fact: Socket class has 218 instances of the word “unsafe”

ServicePointManager

ServicePoint



ServicePointManager Options 

(Defaults)
 CheckCertificateRevocationList

 DefaultConnectionLimit

 DnsRefreshTimeout

 EnableDnsRoundRobin

 EncryptionPolicy

 Expect100Continue

 MaxServicePointIdleTime

 MaxServicePoints

 SecurityProtocol

 ServerCertificateValidationCallback

 UseNagleAlgorithm



ServicePointManager Options 

(Defaults)
 CheckCertificateRevocationList

 Should server certificates be checked against the certificate authority revocation list

 Default is false

 DefaultConnectionLimit

 Set the default max number of connections to a URI

 Defaults to 2!

 Browsers are supposed to limit themselves to 2

 Under ASP defaults to 10

 DnsRefreshTimeout

 How long should a DNS resolution be considered valid?

 In milliseconds

 Default is 120,000 (2 minutes)

 EnableDnsRoundRobin

 Should DNS cycle through all IP addresses (if more than 1)

 Default is false

 Usage Example: DNS loadbalancer



ServicePointManager Options 

(Defaults)
 EncryptionPolicy

 Whether or not to encrypt HTTPS traffic!

 AllowNoEncryption

 NoEncryption

 RequireEncryption (Blessed be, at least this is the default)

 Remember this is for all ServicePoints (connections) for this app!

 Expect100Continue

 Inform server that 100-Continue behavior is expected

 Client will send HTTP header ONLY

 Server will reply with status 100-Continue

 Client will send content

 Good for large payloads

 Don’t send payload if server isn’t ready

 Not uniformly implemented by servers

 Default is true

 Applies to PUT and POST

 Writes HTTP Header: “Expect: 100-Continue”



ServicePointManager Options 

(Defaults)
 MaxServicePointIdleTime

 How long a ServicePoint must be idle before it is removed from the list

 This is important because new ServicePointManager defaults will NOT be applied to existing ServicePoints!

 Defaults are applied ONLY in the ServicePoint constructor

 In milliseconds

 Default is 100,000 (100 seconds)

 MaxServicePoints

 Literally the max number of ServicePoints allowed

 Want to limit this application to only one connection to one URI?

 0 is default meaning, no limit

 SecurityProtocol

 Which protocol to use for HTTPS

 Ssl3

 Tls

 Tls11

 Tls12



ServicePointManager Options 

(Defaults)

 ServerCertificateValidationCallback

 Assign a callback to use to compare server name to name in certificate

 Dangerous if used indiscriminately

 Could be useful for example for subdomain specific cert

 Cert: www.contoso.com

 URI: blog.contoso.com

 UseNagleAlgorithm

 Nagle’s Algorithm tries to reduce flood of messages by ganging small ones together

 Great for telnet (queue up keystrokes rather than send them one at a time)

 Not great for REST (typically one message, no need to try to reduce packets)

 Default is true

http://www.contoso.com/


Common ServicePoint Options

 Expect100Continue

 UseNagleAlgorithm

 ConnectionLimit

 Max connections to this URI

 ConnectionLeaseTimeout

 How long to wait before terminating active connections

 MaxIdleTime

 How long to wait before terminating idle connections

 ReceiveBufferSize

 Can be useful to set to larger size for large files

Note: ServicePoint settings are set via ServicePointManager defaults 

or directly in code not via config file.



Configure Via Code
 Set Defaults via ServicePointManager

ServicePointManager.Expect100Continue = false;

 Set individual values via ServicePoint
ServicePoint uriServicePoint = 
ServicePointManager.FindServicePoint(new Uri(WebApiBase));
uriServicePoint.Expect100Continue = false;

 Note: May or may not be the instance you get later!

 With archaic default of 2 connections, you have 50/50 chance

 Set via HttpWebRequest
webRequestClient.ServicePoint.Expect100Continue = false;

 Set via HttpClient
client.DefaultRequestHeaders.ExpectContinue = false;

Note:

Changes to defaults will NOT affect existing ServicePoint objects.

Those must be idle long enough to timeout and be recreated.



Config Via Config File

 Machine.config, App.Config, Web.Config

 <system.net>
<connectionManagement>

<add address = “http://www.sage.com” maxconnection=“15” />
<add address = “*” maxconnection = “5” />

</connectionManagement>
<settings>

<servicePointManager
useNagleAlgorithm=“false”
expect100Continue=“false”

</servicePointManager>
</settings>

</system.net>

 Remember ServicePointManager defaults are set here

 Not individual ServicePoint objects

 Can be overridden in code



WCF Service Reference

 Generated from WSDL

 Limited options

 Still uses ServicePoints and ServicePointManager

 You can set the defaults via ServicePointManager

 You can theoretically get the HttpWebRequest and thereby ServicePoint

 I have had no luck actually doing so

 You can also access the headers directly via the OperationContextScope



WCF Service Reference Example

 OperationContextScope

using (new OperationContextScope((IClientChannel)client.InnerChannel))
{

WebOperationContext.Current.OutgoingRequest.Headers.Add(HttpRequestHeader.Expect, 
"100-continue");

WebOperationContext.Current.OutgoingRequest.Headers.Remove(HttpRequestHeader.Expect);
// Your code goes here

}

 Client is the instantiated client generated by the tool

 Once you leave scope of using, context reverts to original

 You must make your call at my “Your code goes here” comment

 I put both an add and remove to illustrate the point… Don’t actually do that.



Fiddler: View Network Traffic, But 

Don’t Fool Yourself
 Fiddler lets you watch HTTP traffic

 Works by acting as a proxy server

 WARNING: WebRequest will use the proxy and ALL sites it requests from 
ServicePointManager will share the same ServicePoint key!

 127.0.0.1:8888

 Wireshark does not act as a proxy, because it intercepts packets

 99% of the time Fiddler will be good enough

 1% of the time you will have a mystery on your hands…

 “Wait, I didn’t change the settings on this ServicePoint? Why has it changed?”

 http://docs.telerik.com/fiddler/configure-fiddler/tasks/ConfigureDotNETApp



Resources

 .Net Source Viewer: http://referencesource.microsoft.com/

 Open Sourcing .Net: http://blogs.msdn.com/b/dotnet/archive/2014/11/12/net-core-is-open-source.aspx

 .Net Foundation: http://www.dotnetfoundation.org/

 OSI Model: http://en.wikipedia.org/wiki/OSI_model

 REST: http://en.wikipedia.org/wiki/Representational_state_transfer

 HTTP Visualized: http://blog.catchpoint.com/2010/09/17/anatomyhttp/

 Nagle’s Algorithm: http://en.wikipedia.org/wiki/Nagle%27s_algorithm

 Fiddler: http://www.telerik.com/fiddler

 ServicePointManager Docs: http://msdn.microsoft.com/en-
us/library/System.Net.ServicePointManager(v=vs.110).aspx

 ServicePoint Docs: http://msdn.microsoft.com/en-us/library/system.net.servicepoint(v=vs.110).aspx

 HttpClient Tutorial: http://www.asp.net/web-api/overview/advanced/calling-a-web-api-from-a-net-client

 My HTTP Tester console app: https://github.com/jeffa00/httptester

http://referencesource.microsoft.com/
http://blogs.msdn.com/b/dotnet/archive/2014/11/12/net-core-is-open-source.aspx
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/Representational_state_transfer
http://blog.catchpoint.com/2010/09/17/anatomyhttp/
http://en.wikipedia.org/wiki/Nagle's_algorithm
http://www.telerik.com/fiddler
http://msdn.microsoft.com/en-us/library/System.Net.ServicePointManager(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.net.servicepoint(v=vs.110).aspx
http://www.asp.net/web-api/overview/advanced/calling-a-web-api-from-a-net-client


My Contact Info

 jeffa00@gmail.com

 Blog: ammonsonline.com

 Twitter: jeffa00

mailto:jeffa00@gmail.com

