
HTTP and C#

Working With HTTP/REST APIs 

in .Net

 Jeff Ammons

 ammonsOnline.com



What Is HTTP?

 Hypertext Transport Protocol

 Data Transfer Layer

 Typically Sits On Top of TCP/IP

 Specification: http://www.w3.org/standards/techs/http#w3c_all

 Literally intended to transport hypertext documents

 Stateless

 Basis for World Wide Web



OSI Layers

 From Wikipedia: http://en.wikipedia.org/wiki/OSI_model

 OSI = Open System Interconnection

http://en.wikipedia.org/wiki/OSI_model


HTTP Visualized

From Anatomy of an HTTP Transaction from the Catchpoint Blog:

http://blog.catchpoint.com/2010/09/17/anatomyhttp/

Note that reality is usually a bit more complex

With load balancers and web farms.



HTTP Visualized

From Anatomy of an HTTP Transaction from the Catchpoint Blog:

http://blog.catchpoint.com/2010/09/17/anatomyhttp/



REST

 Representational State Transfer

 Interactive APIs

 Usually built on top of HTTP

 Makes use of established HTTP 

 Verbs

 Headers

 Status Codes



HTTP Verbs

 GET

 HEAD

 POST

 PUT

 DELETE

 TRACE

 OPTIONS

 CONNECT

 PATCH



HTTP Verbs (Most Used)

 GET

 HEAD

 POST

 PUT

 DELETE

 TRACE

 OPTIONS

 CONNECT

 PATCH



HTTP Verbs (Most Used)

 GET Idempotent Return entity or entities

 HEAD

 POST Not Idempotent Create new entity

 PUT Idempotent Update or replace entity

 DELETE Idempotent Remove entity

 TRACE

 OPTIONS

 CONNECT

 PATCH



Headers

 Instructions & Metadata

 POST

 Content-Length: 3

 Connection: Keep-Alive



Status Codes

 1xxx Informational

 100 Continue

 2xxx Success

 200 OK

 201 Created

 202 Accepted

 3xxx Redirection

 301 Moved Permanently

 4xxx Client Error

 403 Forbidden

 404 Not Found

 5xxx Server Error

 500 Internal Server Error

 503 Service Unavailable



Sample HTTP Request
POST http://jeffasage.azurewebsites.net/api/Values/Post HTTP/1.1

Content-Type: application/json

Host: jeffasage.azurewebsites.net

Content-Length: 3

Expect: 100-continue

Connection: Keep-Alive

Foo



Content

Headers

Sample HTTP Request
POST http://jeffasage.azurewebsites.net/api/Values/Post HTTP/1.1

Content-Type: application/json

Host: jeffasage.azurewebsites.net

Content-Length: 3

Expect: 100-continue

Connection: Keep-Alive

Foo



Microsoft’s (Traditional) View Of The World

Windows Desktop



Microsoft’s (Traditional) View Of The World

Windows Desktop

Windows Desktop On Mobile



Microsoft’s (Traditional) View Of The World

Windows Desktop

Windows Desktop On Mobile

Windows Desktop On Server



Microsoft’s (Traditional) View Of The 

World

 Desktop Windows Is The Default

 Everything Else Is A Variant

 Important Because

 Explains Some Oddities in .Net

 Default of 2 Outbound Connections Per host

Example From WebRequest Documentation:

“The DefaultWebProxy property reads proxy settings from the app.config file. 

If there is no config file, the current user's Internet Explorer (IE) proxy settings are used.”



Microsoft’s (New) View Of The World

 Slowly adopting a less Windows-centric view

 Cross platform is becoming a priority

 Open sourcing .Net code needed for server

 Announced Official Linux and Mac .Net

 ASP.Net 5 breaks MVC and Web API away from Web Forms

 Drop desktop windows underpinnings

 Github & Git for development in the open (explains the Git integration with 

TFS)

 20% of VMs on Azure are Linux



.Net Client Interactions With HTTP 

APIs
HttpClient

HttpWebRequest

WebRequest

ServicePointManager

ServicePoint



HttpClient vs WebRequest vs 

HttpWebRequest
 HttpClient is a wrapper around

 HttpWebRequest which is an implementation of the abstract class

 WebRequest

 If you have a choice for REST, choose HttpClient

 Much simpler interface

 Good level of abstraction

 Implements IDisposable

 Can be wrapped in using()

 .Net 4.5 for full features

 Built with async in mind

HttpClient

HttpWebRequest

WebRequest



What About WebClient?

 WebClient also wraps HttpWebRequest

 Derived from Component

 Primarily meant for Windows UI

 Sporadically supported on server

 Supports UI events like progress

 Works with older .Net versions

 Great for interacting with web pages in a GUI



HttpClient Example
using (var client = new HttpClient())
{

client.BaseAddress = new Uri(WebApiBase);
client.DefaultRequestHeaders.Accept.Clear();
client.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue("application/json"));
client.DefaultRequestHeaders.Add(“User-Agent”,”.NET Framework Example Client”);

HttpResponseMessage response = await client.PostAsJsonAsync<string>("api/Values/Post", "Foo");

Console.WriteLine("Request successful? {0}", response.IsSuccessStatusCode);
}



HTTPWebRequest Example
Stream dataStream = null;
WebResponse webResponse = null;

try
{

var webRequestClient = (HttpWebRequest)WebRequest.Create(WebApiBase + "api/Values/Post");
webRequestClient.UserAgent = ".NET Framework Example Client";
webRequestClient.Method = "POST";
webRequestClient.ContentType = "application/json; charset=utf-8";
webRequestClient.Accept = “application/json”;

byte[] contentArr = Encoding.UTF8.GetBytes("\"Foo\"");
webRequestClient.ContentLength = contentArr.Length;

dataStream = webRequestClient.GetRequestStream();
dataStream.Write(contentArr, 0, contentArr.Length);
dataStream.Close();

webResponse = await webRequestClient.GetResponseAsync();

var responseMessage = new HttpResponseMessage(((HttpWebResponse)webResponse).StatusCode);

Console.WriteLine("Request successful? {0}", responseMessage.IsSuccessStatusCode);
}
finally
{

if(dataStream != null)
dataStream.Close();

if (webResponse != null)
webResponse.Close();

}



ServicePoint and 

ServicePointManager
 ServicePoint represents a connection to a server

 Creates socket connection (potentially 2 if it sees IPv6)

 Ultimately hits Winsock (native code)

 Maintains list of how many connections exist

 Enforce max connections

 Options

 ServicePointManager manages a list of ServicePoint objects

 STATIC! Remember that! Practically global in scope (per app).

 Hold default settings

 Factory

 Return Existing or

 Create and Return (up to specified limit)

 Enforce Max ServicePoint objectsFun Fact: Socket class has 218 instances of the word “unsafe”

ServicePointManager

ServicePoint



ServicePointManager Options 

(Defaults)
 CheckCertificateRevocationList

 DefaultConnectionLimit

 DnsRefreshTimeout

 EnableDnsRoundRobin

 EncryptionPolicy

 Expect100Continue

 MaxServicePointIdleTime

 MaxServicePoints

 SecurityProtocol

 ServerCertificateValidationCallback

 UseNagleAlgorithm



ServicePointManager Options 

(Defaults)
 CheckCertificateRevocationList

 Should server certificates be checked against the certificate authority revocation list

 Default is false

 DefaultConnectionLimit

 Set the default max number of connections to a URI

 Defaults to 2!

 Browsers are supposed to limit themselves to 2

 Under ASP defaults to 10

 DnsRefreshTimeout

 How long should a DNS resolution be considered valid?

 In milliseconds

 Default is 120,000 (2 minutes)

 EnableDnsRoundRobin

 Should DNS cycle through all IP addresses (if more than 1)

 Default is false

 Usage Example: DNS loadbalancer



ServicePointManager Options 

(Defaults)
 EncryptionPolicy

 Whether or not to encrypt HTTPS traffic!

 AllowNoEncryption

 NoEncryption

 RequireEncryption (Blessed be, at least this is the default)

 Remember this is for all ServicePoints (connections) for this app!

 Expect100Continue

 Inform server that 100-Continue behavior is expected

 Client will send HTTP header ONLY

 Server will reply with status 100-Continue

 Client will send content

 Good for large payloads

 Don’t send payload if server isn’t ready

 Not uniformly implemented by servers

 Default is true

 Applies to PUT and POST

 Writes HTTP Header: “Expect: 100-Continue”



ServicePointManager Options 

(Defaults)
 MaxServicePointIdleTime

 How long a ServicePoint must be idle before it is removed from the list

 This is important because new ServicePointManager defaults will NOT be applied to existing ServicePoints!

 Defaults are applied ONLY in the ServicePoint constructor

 In milliseconds

 Default is 100,000 (100 seconds)

 MaxServicePoints

 Literally the max number of ServicePoints allowed

 Want to limit this application to only one connection to one URI?

 0 is default meaning, no limit

 SecurityProtocol

 Which protocol to use for HTTPS

 Ssl3

 Tls

 Tls11

 Tls12



ServicePointManager Options 

(Defaults)

 ServerCertificateValidationCallback

 Assign a callback to use to compare server name to name in certificate

 Dangerous if used indiscriminately

 Could be useful for example for subdomain specific cert

 Cert: www.contoso.com

 URI: blog.contoso.com

 UseNagleAlgorithm

 Nagle’s Algorithm tries to reduce flood of messages by ganging small ones together

 Great for telnet (queue up keystrokes rather than send them one at a time)

 Not great for REST (typically one message, no need to try to reduce packets)

 Default is true

http://www.contoso.com/


Common ServicePoint Options

 Expect100Continue

 UseNagleAlgorithm

 ConnectionLimit

 Max connections to this URI

 ConnectionLeaseTimeout

 How long to wait before terminating active connections

 MaxIdleTime

 How long to wait before terminating idle connections

 ReceiveBufferSize

 Can be useful to set to larger size for large files

Note: ServicePoint settings are set via ServicePointManager defaults 

or directly in code not via config file.



Configure Via Code
 Set Defaults via ServicePointManager

ServicePointManager.Expect100Continue = false;

 Set individual values via ServicePoint
ServicePoint uriServicePoint = 
ServicePointManager.FindServicePoint(new Uri(WebApiBase));
uriServicePoint.Expect100Continue = false;

 Note: May or may not be the instance you get later!

 With archaic default of 2 connections, you have 50/50 chance

 Set via HttpWebRequest
webRequestClient.ServicePoint.Expect100Continue = false;

 Set via HttpClient
client.DefaultRequestHeaders.ExpectContinue = false;

Note:

Changes to defaults will NOT affect existing ServicePoint objects.

Those must be idle long enough to timeout and be recreated.



Config Via Config File

 Machine.config, App.Config, Web.Config

 <system.net>
<connectionManagement>

<add address = “http://www.sage.com” maxconnection=“15” />
<add address = “*” maxconnection = “5” />

</connectionManagement>
<settings>

<servicePointManager
useNagleAlgorithm=“false”
expect100Continue=“false”

</servicePointManager>
</settings>

</system.net>

 Remember ServicePointManager defaults are set here

 Not individual ServicePoint objects

 Can be overridden in code



WCF Service Reference

 Generated from WSDL

 Limited options

 Still uses ServicePoints and ServicePointManager

 You can set the defaults via ServicePointManager

 You can theoretically get the HttpWebRequest and thereby ServicePoint

 I have had no luck actually doing so

 You can also access the headers directly via the OperationContextScope



WCF Service Reference Example

 OperationContextScope

using (new OperationContextScope((IClientChannel)client.InnerChannel))
{

WebOperationContext.Current.OutgoingRequest.Headers.Add(HttpRequestHeader.Expect, 
"100-continue");

WebOperationContext.Current.OutgoingRequest.Headers.Remove(HttpRequestHeader.Expect);
// Your code goes here

}

 Client is the instantiated client generated by the tool

 Once you leave scope of using, context reverts to original

 You must make your call at my “Your code goes here” comment

 I put both an add and remove to illustrate the point… Don’t actually do that.



Fiddler: View Network Traffic, But 

Don’t Fool Yourself
 Fiddler lets you watch HTTP traffic

 Works by acting as a proxy server

 WARNING: WebRequest will use the proxy and ALL sites it requests from 
ServicePointManager will share the same ServicePoint key!

 127.0.0.1:8888

 Wireshark does not act as a proxy, because it intercepts packets

 99% of the time Fiddler will be good enough

 1% of the time you will have a mystery on your hands…

 “Wait, I didn’t change the settings on this ServicePoint? Why has it changed?”

 http://docs.telerik.com/fiddler/configure-fiddler/tasks/ConfigureDotNETApp



Resources

 .Net Source Viewer: http://referencesource.microsoft.com/

 Open Sourcing .Net: http://blogs.msdn.com/b/dotnet/archive/2014/11/12/net-core-is-open-source.aspx

 .Net Foundation: http://www.dotnetfoundation.org/

 OSI Model: http://en.wikipedia.org/wiki/OSI_model

 REST: http://en.wikipedia.org/wiki/Representational_state_transfer

 HTTP Visualized: http://blog.catchpoint.com/2010/09/17/anatomyhttp/

 Nagle’s Algorithm: http://en.wikipedia.org/wiki/Nagle%27s_algorithm

 Fiddler: http://www.telerik.com/fiddler

 ServicePointManager Docs: http://msdn.microsoft.com/en-
us/library/System.Net.ServicePointManager(v=vs.110).aspx

 ServicePoint Docs: http://msdn.microsoft.com/en-us/library/system.net.servicepoint(v=vs.110).aspx

 HttpClient Tutorial: http://www.asp.net/web-api/overview/advanced/calling-a-web-api-from-a-net-client

 My HTTP Tester console app: https://github.com/jeffa00/httptester

http://referencesource.microsoft.com/
http://blogs.msdn.com/b/dotnet/archive/2014/11/12/net-core-is-open-source.aspx
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/Representational_state_transfer
http://blog.catchpoint.com/2010/09/17/anatomyhttp/
http://en.wikipedia.org/wiki/Nagle's_algorithm
http://www.telerik.com/fiddler
http://msdn.microsoft.com/en-us/library/System.Net.ServicePointManager(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.net.servicepoint(v=vs.110).aspx
http://www.asp.net/web-api/overview/advanced/calling-a-web-api-from-a-net-client


My Contact Info

 jeffa00@gmail.com

 Blog: ammonsonline.com

 Twitter: jeffa00

mailto:jeffa00@gmail.com

